Conjugation of para-benzoquinone of Cigarette Smoke with Human Hemoglobin Leads to Unstable Tetramer and Reduced Cooperative Oxygen Binding

Authors : Mitra A, Mandal AK

Publication Year : 2018

Abstract :

Besides multiple life-threatening diseases like lung cancer and cardiovascular disease, cigarette smoking is known to produce hypoxia, a state of inadequate oxygen supply to tissues. Hypoxia plays a pivotal role in the development of chronic obstructive pulmonary disease. Smoking during pregnancy imposes risk for the unborn child. In addition to carbon monoxide, conjugation of para-benzoquinone (pBQ), derived from cigarette smoke, with human hemoglobin (HbA) was also reported to contribute in hypoxia. In fact, conjugation of pBQ is more alarming than carbon monoxide as it is an irreversible covalent modification. In the present study, the functional assay of Hb-pBQ, performed through oxygen equilibrium curve, showed a significant decrease in both P50 and cooperativity. However, the structural changes associated with the observed functional perturbation of the hemoglobin conjugate (Hb-pBQ) are unknown to date. Enhanced sensitivity and high resolution of nano-ESI mass spectrometry platform have enabled to investigate the native structure of oligomers of hemoglobin in a single scan. The structural integrity of Hb-pBQ measured through the dissociation equilibrium constants (Kd) indicated that compared to HbA, Kd of tetramer-dimer and dimer-monomer equilibria were increased by 4.98- and 64.3-folds, respectively. Using isotope exchange mass spectrometry, we observed perturbations in the inter-subunit interactions of deoxy and oxy states of Hb-pBQ. However, the three-dimensional architecture of Hb-pBQ, monitored through collision cross-sectional area, did not show any change. We propose that the significant destabilization of the functionally active structure of hemoglobin upon conjugation with pBQ results in tighter oxygen binding that leads to hypoxia.